Distribution of the bat Family Mormoopidae in Honduras

Contenido principal del artículo

David Josué Mejía-Quintanilla
Jonathan Hernández
Hermes Vega
Leonel Marineros
Manuel Spinolla-Parallada
Bernal Rodríguez
Fiona Reid
Mónica Farrera Hernández
Arnulfo Medina
Alberto Mejía-Paniagua
Fausto Elvir-Valle

Resumen

Honduras is the second country in central America along with Panamá with the greatest bat diversity, and the insectivorous bats are the most diverse in the Chiroptera order. The family Mormoopidae has the largest number of records in Honduras and these bats are important as pest control in crops where they are present. To understand the importance of the Mormoopidae family in Honduras, we need to know where it is distributed. A species distribution model is a tool that provides information on the distribution of the species, based on presences records and climate variables. We collected information from free access databases like GBIF, reports, and paper publication to obtain presence data in Honduras. To run the models, we used Maxent in dismo package. Our results show a similar distribution for all species of Mormoopidae family, the principal causes that limited the distribution of the species are ecosystem type and altitude; some species tolerated evergreen forest and others prefer dry forest, in terms of elevation, in some species is limited from lowland to 1500 m.a.s.l., like Mormoops megalophylla, Pteronotus psilotis, and Pteronotus gymnonotus, and others can inhabit above 2800 m.a.s.l., like Pteronotus fulvus, and Pteronotus mesoamericanus. We need to obtain more records of species like M. megalophylla, P. psilotis, and P. gymnonotus. More surveys in the eastern part of Honduras are necessary where there are many information gaps, this would help us to have more robust models and a better understanding of the distribution of these species.

Detalles del artículo

Compartir en:

Métricas de PLUMX

Citas

Agulla-Menoni, J. 2007. Manual: Sistema de indicadores ambientales de Honduras. SIAH. SERNA, Tegucigalpa, HN

Arias-Aguilar, A. y M.J. Ramos Pereira. 2022. Acoustic clue: bringing echolocation call data into the distribution dilemma of Pteronotus (Chiroptera: Mormoopidae) complexes in Central America. Biological Journal of the Linnean Society, 135:586-598.

Boada, C., S. Burneo, T. de Vries y D.S. Tirira. 2003. Notas ecológicas y reproductivas del murciélago rastro de fantasma Mormoops megalophylla (Chiroptera: Momoopidae) en San Antonio de Pichincha. Mastozoología Neotropical, 10:21-26.

Boyle, J.G., P.M. Cryan, G.F. McCracken y T.H. Kunz. 2011. Economic importance of bats in agriculture. Science, 332:41-42.

Calabrese, J.M., G. Certain, C. Krann y C.F. Dormann. 2014. Stacking species distribution model and adjusting bias by linking them to macroecological model. Global Ecology and Biogeography, 23:99-112.

Cooper-Bohannon, R.C., H. Rebelo, G. Jones, Fenton, Cotterill, A. Monadiem, M.C. Schoeman, P. Taylor y K. Park. 2016. Predicting bat distribution and diversity hotspots in southern Africa. Hystrix, the Italian Journal of Mammology, DOI: 10.4404/hystix-21.1.11722.

De La Torre, J.A. y R.A. Medellín. 2010. Pteronotus personatus (Chiroptera: Mormoopidae). Mammalian Species, 42:244-250.

Elith, J. y J.R. Leathwick. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40:677-697.

Ferraz K., B. Beisiegel y R. Cunha de Paula. 2012. How species distribution models can improve cat conservation-jaguars in Brazil. Cat News Special Issue, 7:38-42.

Garbino, G.S., Brandão, M.V. y V. da Cunha Tavares. 2022. First confirmed records of Godman’s Long-tailed Bat, Choeroniscus godmani (Thomas, 1903) (Chiroptera, Phyllostomidae), from Brazil and Panama. Check List, 18:493-499.

GBIF.org (10 November 2022). GBIF Occurrence Download https://doi.org/10.15468/dl.m496tz

Girón-Galvan, L.E. 2020. Morfología, ecolocalización y uso de micro-hábitat de murciélagos del género Pteronotus (Chiroptera: Mormoopidae) en el Parque Nacional Barra Honda, Costa Rica. Tesis de Maestría, Universidad Nacional de Costa Rica, San José Costa Rica.

Godwin, G.G. 1942. Mammals of Honduras. Bulletin of The American Museum of Natural History, 79:107-195.

Guisan, A. y W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letter, 8:993-1009.

Goodman, M.S., D. Andrianfidison, R. Andrianaivoarivelo, S.G. Cardiff, E. Ifticene, R.K.B. Jenkins, A. Kofoky, T. Mbohoahy, D. Rakotondravoy, J. Ranivo, F. Ratrimomanarivo, J. Razafimanahaka y P.A. Racey. 2005. The distribution and conservation of bats in the dry regions of Madagascar. Animal Conservation, 8:153-165.

Hanberry, B.B., H.S. He. y D.C. Dey. 2012. Sample sizes and model comparison metrics for species distribution models. Ecological Modelling, 227:29-33.

Hernández, D.J. 2015. sicom Hato Viejo [online]. relcom, Tucuman, Argentina. Consult on: https://www.relcomlatinoamerica.net/%C2%BFqu%C3%A9-hacemos/conservacion/aicoms-sicoms/aicoms-sicoms-buscador/ad/sicoms,2/cueva-de-hato-viejo,95.html#dj-classifieds

Hijmans, Robert J., S. Phillips, J. Leathwick y J. Elith. 2020. Dismo: Species Distribution Modeling. R package version 1.3-3. https://CRAN.R-project.org/package=dismo

ICF. 2018. Anuario estadístico forestal de Honduras, 2018. 33 ed. icf, Tegucigalpa, Honduras.

Kumar, S. y T.J. Stohlgren. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1:94-98.

Loiselle, B.A., C.A. Howell, C.H. Graham, J.M. Goerck, T. Brooks, K.G. Smith y P.H. Williams. 2002. Avoiding pitfalls of using species distribution model in conservation planning. Conservation Biology,17:1591-1600.

Mackenzie, D.I. y J.A. Royle. 2005. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology, 42:1105-1114.

Marineros, L. y F. Martínez. 1998. Mamíferos de Honduras. inades, Tegucigalpa

McCain, C.M. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16:1-13.

Medina-Fitoria, A. 2014. Murciélagos de Nicaragua. Programa de Conservación de Murciélagos de Nicaragua y Ministerio del Ambiente y Recursos Naturales, Managua Nicaragua.

Mejía-Quintanilla, D.J. 2017. Distribución y el estado de conservación para algunas especies de murciélagos pertenecientes a la familia Mormoopidae y Emballonuridae en Honduras, Centroamérica. Tesis de Maestría, Universidad Nacional, Heredia, Costa Rica.

Mora, J.M. 2016. Clave para la identificación de las especies de murciélago de Honduras. Ceiba, 54: 93-117.

O’Donnel, M.S. y D.A. Ignizio. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series, 691:1-10.

Pavan, A.C., R. Cadenillas, O. Centty, V. Pacheco y P.M. Velazco. 2021. On the taxonomic identity of Pteronotus davyi incae Smith, 1972 (Chiroptera: Mormoopidae). American Museum Novitates 2020:1-24.

Pavan, A.C. y G. Marroig. 2016. Integrating multiple evidence in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution, 103:184-198.

Pavan, A.C. y G. Marroig. 2017. Timing and patterns of diversification in the Neotropical bat henus Pteronotus (Mormoopidae). Molecular Phylogenetics and Evolution, 108:61-69.

Pearson, R.G. y T.P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope model. Global Ecology and Biogeography, 12:361-371.

Pearson, R.G. 2007. Species distribution modeling for conservation educators and practitioners. American Museum of Natural History. Available at: http://ncep.amnh.org

Proches, S. 2005. The world’s biogeographical regions: cluster analyses based on bat distributions. Journal of Biogeography, 32:607-614.

Portillo, H. 2007. Recopilación de la información sobre la biodiversidad de Honduras. Secretaría de Recursos Naturales y Ambiente, Tegucigalpa, HN.

Pearce, J.L. y M.S. Boyce. 2006. Modeling distribution and abundance with presence-only data. Journal of Applied Ecology, 43:405-412.

Randin, C.F., R. Engler, S. Normandw, M. Zappaz, N.E. Zimmermannz, P.B. Pearman, P. Vittoz, W. Thuiller y A. Guisan. 2009. Climate change and plant distribution: local model predicts high-elevation persistence. Global Change Biology, 15:1557-1569.

Reid, F. 2009. A Field Guide to the Mammals of Central America and Southeast Mexico. Oxford University Press, Oxfordshire, Reino Unido.

Rezsutek, M. y G.N. Cameron. 1993. Mormoops megalophylla. Mammalian Species, 448:1-5.

Rolfe, A.K., A. Kurta y D.L. Clemans. 2014. Species-level analysis of diets of two mormoopid bats from Puerto Rico. Journal of Mammalogy, 95:587-596.

Rolfe, A.K. 2011. Diet of three mormoopid bats (Mormoops blainvillei, Pteronotus quadridens, and Pteronotus portoricensis) on Puerto Rico. Master Science Thesis. Eastern Michigan University.

Torres, N.M., P. Marco, T. Jr. Santos, L. Silveira, A.T.A. Jácomo y J.A.F. Diniz-Filho. 2012. Can species distribution model modeling provide estimates of population densities? A case study with a jaguar in the neotropics. Diversity and Distribution, 18:615-627.

Turcios-Casco, M.A., H.D. Ávila-Palma, R.K. LaVal, R.D. Steves, E.J. Ordoñez-Trejo, J.A. Soler-Orellana y D.I. Ordoñez-Mazier. 2020. A systematic revision of the bats (Chiroptera) of Honduras: an updated checklist with corroboration of historical specimens and new records. Zoosystematic and Evolution, 92:411-429.

Wilson, L. y J.R. Mayer. 1985. The snakes of Honduras. Milwaukee Public Museum, Wisconsin, US.

Wisz, M.S., R.J Hijmans, J. Ki, A.T. Peterson, C.H. Graham, A. Guisan y nceas Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14:763-773.

Wolbert, S.J., A.S. Zelher y H.P. Whidden. 2014. Bat activity insect biomass and temperature along an elevation gradient. Northeastern naturalist, 21:72-85.