Evaluación preliminar de la diversidad de murciélagos de la Reserva Biológica Uyuca, Honduras

Contenido principal del artículo

David Josué Mejía-Quintanilla
Allan Mauricio Cruz Granado
Carlos Funes
Freddy Roldán Cabrera-Aguilar
Karla Lara
Walter José Alvarado-Ortíz
Heymi Arias
Josué Portillo

Resumen

RESUMEN


La diversidad de murciélagos que pueden albergar las áreas protegidas está determinada por la calidad de hábitat y la heterogeneidad del paisaje. Estás a su vez son determinadas por su manejo. Esta diversidad nos indica también los bienes y servicios ecosistémicos que nos puede proveer un área protegida. En el caso de los murciélagos la dispersión de semillas, la polinización de plantas y el control poblacional de insectos, son algunos de los servicios ecosistémicos que aportan a los hábitats. Es por esto que nos planteamos el objetivo de aportar datos para el plan de manejo de la Reserva Biológica Uyuca y para conocer la diversidad de murciélagos que alberga este sitio. Se utilizaron las técnicas de muestreo de redes de niebla y grabación de sonidos ultrasónicos para tener un amplio espectro de la diversidad de murciélagos de la zona. Logramos identificar 25 especies de murciélagos lo que representa el 22% de la diversidad de quirópteros reportados para Honduras. Se identificaron tres gremios: frugívoros, insectívoros y nectarívoros, siendo las especies insectívoras las de mayor riqueza. Nuestros resultados sugieren que la Reserva Biológica Uyuca alberga una alta diversidad de murciélagos y cumple su papel en la protección y conservación de murciélagos, así como sus hábitats y los bienes y servicios ecosistémicos que estos proveen. Es necesario seguir muestreando otros sectores de la reserva para conocer con mayor precisión la diversidad de quiropterofauna y realizar estudios poblacionales de especies de interés de conservación.


Palabras clave: Áreas protegidas, Chiroptera, conservación, paisaje.

Detalles del artículo

Compartir en:

Métricas de PLUMX

Citas

Aguilar-Rodríguez, P.A., T. Krömer, M.Tschapka, J.G. García-Franco, J. Escobedo-Sarti y M.C. MacSwiney G. 2019. Bat pollination in Bromeliaceae. Plant Ecology & Divesity, https://doi.org/10.1080/17550874.2019.1566409.

Bordignon, M.O. 2006. Diet of the fishing bat Noctilio leporinus (Linnaeus) (Mammalia, Chiroptera) in a mangrove area of southern Brazil. Revista Brasileira de Zoologia, 23(1):256-260.

Boyles, J.G. P.M. Cryan, G.F. McCracken y T.H. Kunz. 2011. Economic importance of bats in agriculture. Science, 332(6025):41-42.

Cely-Gómez, M.A. y D. Castillo-Figueroa. 2019. Dieto f dominant frugivorous bat species in an oil palm landscape from Colombian Llanos: implications for forest conservation and recovery. Therya, 10(2):149—154.

Cruz, A., F. Cabrera, H. Flores, J. Portillo, W. Alvarado, D. Mejía, K. Lara y C. Funes. 2020. Resultados del taller: “Mejorando las capacidades de investigación de los jóvenes del Programa de Conservación de Murciélagos de Honduras (PCMH)”. Boletín RELCOM 12(2): en prensa.

Cohen, Y., S. Bar-David, M. Nielsen, K. Bohnmann y C. Korine. 2020. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Molecular ecology, 29:1185-1198

Enríquez-Acevedo, T., J. Pérez-Torres, C. Ruiz-Agudelo y A. Suarez. 2020. Seed dispersal by fruit bats in Colombia generates ecosystem services. Agronomy for Sustainable Development, 40:45.

Figueroa-Castillo, D. 2020. Why bats matters: A critical assessment of bat-mediated ecological processes in the neotropics. European Journal of Ecology, 6(1):77-101

Gonsalves, L., B. Law, C. Webb and V. Monamy. 2013. Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance. PlosOne, 8(5): e64081. doi:10.1371/journal.pone.006408

ICF y SERNA. 2009. Plan estratégico del Sistema Nacional de Áreas Protegidas de Honduras (2010-2020). ICF y SERNA, Tegucigalpa, Honduras.

Jones, P.L., F. Hänsch, R. A. Page, E.K.V. Kalko y T.O’Mara. 2017. Foraging and roosting behaviour of the fringe-lipped bat, Trachops cirrhosis, on Barro Colorado Island, Panamá. Acta Chiropterologica, 19(2):337-346.

Kahnonitch, I., Y. Lubin y G. Korine. 2018. Insectivorous bats in semi-arid agroecosystems – effects on foraging actividity and implications for insect pest control. Agriculture, Ecosystems and Environment, 261:80-92.

Kerbiriou, C., C. Azam, J. Touroult, J. Marmet, J. Julien, V. Pellissier. 2018. Common bats are more abundant within Natura 2000 areas. Biological Conservation, 217:66-74.

Librán-Embid, F., G. De Coster y J. P. Metzger. 2017. Effects of bird and bat exclusion on coffee pest control at multiple spatial scale. Landscape Ecology, 32:1907-1920.

Maas, B., Y. Clough y T. Tscharntke. 2013. Bats and birds increase crop yield in tropical agroforestry landscape. Ecology letters, 16:1480-1487.

Maine, J.J. y J.G. Boyles. 2015. Bats initiative vital agroecological interactions in corn. PNAS, 112(40):12438-12443.

Medellín, R.A., H.A. Arita y O. Sánchez H. 2008. Identificación de los murciélagos de México clave de campo. 2a ed., Instituto de Ecología, UNAM. México, D.F.

Miller, B.M. (2003). Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize, Ph.D. Thesis. University of Kent Dureell Institute of Conservation and Ecology, UK, p.293.

Mora, J.M. 2016. Clave para la identificación de las especies de murciélago de Honduras. Ceiba, 54:93-117.

Mullin, K.; N. Yoh; S. L. Mitchell, S. Basrur, D.J.I. Seaman, H. Bernard y M.J. Struebig. 2020. Riparian reserves promote insectivorious bat activity in oil plan dominated landscapes. Frontiers in Forests and Global Change, 3:1-12.

Nurfatiha, S. N. Fakhrul-hatta, B. Raveen Nelson, N. J. Shafie, M.A. Zahidin, M.T. Abdullah. 2018. Linkages between chisopteran diversity and ecosystem services for sustainable fragmented forest conservation. Journal Data in Brief, 21:2089-2094.

Oprea, M., C.E.L. Esbérard, T.B. Vieira, P. Mednes, V.T. Pimenta, D. Brito y A.D. Ditchfield. 2009. Bat community species richness and composition in a restinga protected ares in Southeastern Brazil. Brazilian Journal of Biology, 69(4):1073-1079.

Regolin, A.L., R.L. Muylaert, A.C. Crestani, W. Dáttilo y M. C. Ribeiro. 2020. Seed dispersal, by neotropical bats in human-disturbed landscape. Wildlife Research 48(1):A-F.

Ribeiro Mello, M., F.M. Darcie Marquitti, P. R. Guimarães Jr., E. K. Viktoria Kalko, P. Jodano y M.a. Martinez de Aguiar. 2011. The missing part of seed dispersal networks: structure androbustness of bat-fruit interactions. PlosOne, 6(2): e17395.

Rodríguez-San Pedro, A., J. L. Allendes. C. A. Beltrán, P.N. Chaperon, M.M. Saldarriaga-Córdoba, A.X. Silva y A.A. Grez. Quantifying ecological and economic value of pest control services provided by bats in a vineyard landscape of central Chile. Agriculture, Ecosystems and Environment, 302(107063):1-9.

Silva, I., R. Rocha, A. López-Baucells, F.Z. Ferneda y C.E.J. Meyer. 2020. Effect of forest fragmentation on the vertical stratification of Neotropical bats. Diversity, 12(67):1-15

Stewart, A.B. y M.R. Dudash. 2016. Flower-visiting bat species contribute unequally toward agricultural pollination ecosystem services in southern Thailand. Biotropica, 49 (2): 1-23.

Tremlett, C.J., M. Moore, M.A. Chapman, C.Zamora-Gutierrez y K.S.H. Peh. 2019. Pollination by bats enhances both quality and yield of a major cash crop in México. Journal of Applied Ecology, 57:450-459.

Turcios-Casco, M.A., H.D. Ávila-Palma, R.K. LaVal, R.D. Stevens, E.J Ordoñez-Trejo, J.A. soler-Orellana, D.I. Ordoñez-Mazier. 2020. A systematic revision of the bats (Chiroptera) of Honduras: an updated checklist with corroboration of historical specimens and new records. Zoosystematics and Evolution,92:411-429.

Universidad Zamorano e ICF. 2020. Plan de Manejo de la Reserva Biológica Uyuca (2020 – 2032). Centro Zamorano de Biodiversidad, Departamento de Ambiente y Desarrollo, Universidad Zamorano, San Antonio de Oriente; e ICF, Región Forestal Fco. Morazán, Oficina Regional Tegucigalpa.

Vehrencamp,, S., F. Gary Stiles y J.W. Brandbury. 1977. Observations on the Foraging Behavior and Avian Prey of the Neotropical Carnivorous Bat, Vampyrum spectrum. Mammalogy, 58(4):469-478.

Vicente-Santos, A., A. Moreira-Soto, C. Soto-Garita, L.G. Chaverri, A. Chaves, J.F. Drexler, J.A. Morales, A. Alfaro-Alarcón, B. Rodríguez-Herrera, E. Corrales-Aguilar. 2017. Neotropical bats that co-habit with humans function dead-end hosts for dengue virus. Plos Neglrected Tropical Diseases 11(5): e0005537.